
REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
maintaining the

data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Sen/ices, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
2002

2. REPORT TYPE
Journal Article

3. DATES COVERED (From - To)
2000 to 2002

4. TITLE AND SUBTITLE
Development of a Testbed for Distributed Satellite Command

And Control

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER
62601F

6. AUTHOR(S)
Paul Zetocha
Margarita Brito*

5d. PROJECT NUMBER
8809

5e. TASK NUMBER
LJ

5f. WORK UNIT NUMBER
01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory/VS
3550 Aberdeen Ave. SE
Kirtland ARB, NM 87117-5776

8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; Distribution unlimited.

13. SUPPLEMENTARY NOTES
*Princeton Satellite Systems

14. ABSTRACT
At the Air Force Research Laboratory's Space Vehicles Directorate we are investigating and developing architectures for commanding and
controlling a cluster of cooperating satellites through prototype development for the TechSat-21 program. The objective of this paper is to
describe a distributed satellite testbed that is currently under development and to summarize near term prototypes being implemented for
cluster command and control. To design, develop, and test our architecture we are using eight PowerPC750 VME-based single board
computers, representing eight satellites. Each of these computers is hosting the OSE™ real-time operating system from Enea Systems. At
the core of our on-board cluster manager is ObjectAgent. ObjectAgent is an agent-based object-oriented framework for flight systems,
which is particularly suitable for distributed applications. In order to handle communication with the ground as well as to assist with the
cluster management we are using the Spacecraft Command Language (SCL). SCL is also at the centerpiece of our ground control station
and handles cluster commanding, telemetry decommutation, state-of-health monitoring, and Fault Detection, Isolation, and Resolution
(FDIR). For planning and scheduling activities we are currently using ASPEN from NASA/JPL. This paper will describe each of the above
components in detail and then present the prototypes being implemented.

15. SUBJECT TERMS
prototype, TechSat-21, satellite testbed, ObjectAgent, spacecraft command language

16. SECURITY CLASSIFICATION OF:

a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

17. LIMITATION
OF ABSTRACT

Unlimited

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
Paul Zetocha
19b. TELEPHONE NUMBER (include area
code)
(505) 853-4114

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18

r~\V3 OTc

Development of a Testbed for Distributed Satellite
Command and Control

Paul Zetocha
Space Vehicles Directorate
Air Force Research Laboratory
Paul.Zetocha(S>,Kirtland.af.mil

Abstract — At the Air Force Research Laboratory's Space
Vehicles Directorate we are investigating and developing
architectures for commanding and controlling a cluster of
cooperating satellites through prototype development for the
TechSat-21 program. The objective of this paper is to
describe a distributed satellite testbed that is currently under
development and to summarize near term prototypes being
implemented for cluster command and control. To design,
develop, and test our architecture we are using eight
PowerPC750 VME-based single board computers,
representing eight satellites. Each of these computers is
hosting the OSE™ real-time operating system from Enea
Systems. At the core of our on-board cluster manager is
ObjectAgent. ObjectAgent is an agent-based object-
oriented framework for flight systems which is particularly
suitable for distributed applications. In order to handle
communication with the ground as well as to assist with
cluster management we are using the Spacecraft Command
Language (SCL). SCL is also at the centerpiece of our
ground control station and handles cluster commanding,
telemetry decommutation, state-of-health monitoring, and
Fault Detection, Isolation, and Resolution (FDIR). For
planning and scheduling activities we are currently using
ASPEN from NASA/JPL. This paper will describe each of
the above components in detail and then present the
prototypes being implemented.

TABLE OF CONTENTS

1. Introduction
2. TESTBED ARCHITECTURE

3.1 GROUND SYSTEM

3.2 FLIGHT SYSTEM

3.2.1 OBJECTAGENT
3. PROTOTYPE DEMONSTRATION

4. CONCLUSION / FUTURE RESEARCH

5. REFERENCES

Margarita Brito
Princeton Satellite Systems

megui@psatellite.com

cases this results in costly satellites which are more
complex, more susceptible to failure, and which have
performance characteristics that are less than optimal due to
realistic physical size limitations. Recently various
organizations have begun to explore how distributed clusters
of cooperating satellites can replace their larger monolithic
counterparts resulting in an overall cost reduction, enhanced
mission performance, and increased system fault tolerance.
Large clusters of satellites flying in formation are required to
have some level of on-board autonomy in order to: fly
within specified tolerance levels; perform collision
avoidance; perform FDIR; and plan and schedule activities.
In addition, from an operations standpoint commanding and
controlling a large cluster of satellites can be very
burdensome for ground operators. We are addressing these
issues by incorporating an on-board cluster manager which
will in essence provide the capability to treat the cluster of
satellites as a single virtual satellite. From a ground
perspective the ground control station must also be able to
treat the cluster as a virtual satellite.

Several prototypes are planned in order to develop, test, and
demonstrate cluster management functionality and the
virtual satellite concept. The initial prototype being
developed involves three satellites flying in formation with
the ability to perform autonomous reconfiguration based on
equipment failure. Among other tasks, on a periodic basis
the on-board cluster manager accumulates telemetry from all
satellites and forwards that, along with cluster level status, to
the ground for display, monitoring, and archiving. The
ground station has the ability to send either commands to
individual satellites or to the cluster manager. In the latter
case the cluster manager uses on-board knowledge to
determine the appropriate response. The above
functionality as well as others will be elaborated on in the
sections that follow.

2. TESTBED ARCHITECTURE

1. INTRODUCTION

For many satellite missions large monolithic satellites are

U.S. Government work not protected by U.S. copyright,
required to satisfy objectives to a satisfactory level. In many

In order to develop and test the various satellite cluster
command and control techniques, as well as other TechSat-
21 technologies, a distributed satellite testbed is being
developed. A simplified version of the TechSat-21 testbed
is depicted in figure 1.

20021122 082

ObjectAgen

Virtual
Satellite

Flight
Processors

Satellite Control
Ground Station

Figure 1: TechSat-21 testbed

The figure shows the three major components of the testbed.
The ground system is shown on the right side, the flight
system is shown on the left side and the simulation
environment is in the middle. The Realt-Time Operating
System (RTOS) used is OSE and the Remote Data Base
Management System (RDMS) is NT SQL Server. The first
two components will be discussed in greater detail in
sections 2.1 and 2.2 respectively. The simulation
environment will not be discussed because different
simulations can be used depending on the required level of
fidelity.

2.1 GROUND SYSTEM

Commanding and controlling a cluster of satellites from the
ground pose many challenges. In order to optimize ground
operation cost and manpower, different methods are needed
to command and control the cluster, monitor the cluster, and
to perform telemetry decommutation. These first two tasks
are highlighted here. The details of cluster telemetry
decommutation are left for discussion elsewhere.

For a large cluster it is not efficient or cost effective to
command satellites on an individual basis. A more efficient
method is to send commands to the on-board cluster
manager and then have the cluster manager either parse the
command string and forward the command(s) to the
appropriate satellite(s) or to make some intelligent decision
as to the most appropriate action. Two types of ground
commanding and controlling are possible. The first type
involves sending up a sequence of commands which are
intended for specific satellites. With this scenario, one
possible implementation method is to use a delimiter to
separate commands with each command possessing fields
containing the satellite number, command name, value,
duration, and time. This description is simplified to
illustrate the point and neglects fields such as a CRC field
for error checking. This command string would be sent to
the on-board cluster manager where the cluster manager

would then parse the command string and send commands to
the appropriate satellites.

A second type of commanding involves commands which
are sent to the cluster without specific indication as to which
satellites in the cluster will ultimately be effected. A
hypothetical example might be to issue a command to
"observe region x at time y". The cluster manager, based on
the status of the satellites at time y, will then determine the
appropriate course of action to be taken. This type of
commanding requires more on-board intelligence than in the
first scenario and has a higher level of risk. Because of the
higher level of risk, safeguards need to be put in place to
ensure no adverse conditions arise.

To command the cluster of satellites a common frequency
will be used with a spacecraft ID used to denote what
commands are destined for which satellites. The satellites
are flying in close enough formation so that they are all
within the same beamwidth. All satellites receive the
command but not all will process that command. The
operation is somewhat analogous to a TCP/IP broadcast
system.

Telemetry decommutation on the ground requires being able
to parse telemetry from multiple satellites. For a TDM-
based telemetry system this scales nicely from how
traditional Time Division Multiplexing (TDM)-based
systems operate. Telemetry from different satellites simply
gets associated with specified frames and frame locations.
For CCSDS-based systems packets can contain a field which
identifies where they originated.

Developing methods to monitor and visualize cluster state-
of-health can be very difficult. Visualizing individual
satellite mnemonics can be difficult for moderately complex
satellites and this problem gets magnified for a cluster of
satellites. One solution is to develop a hierarchical
telemetry display system. A top level system would contain
the overall status of individual satellites. Choosing an
individual satellite and drilling down to the second level
would contain a display showing all subsystems for that
satellite. Additional levels would partition a subsystem even
further. Anomalous conditions would be highlighted at any
level by bubbling up problems through the hierarchy.

As the core of our ground system we are baselining the
Spacecraft Command Language (SCL) from Interface and
Control Systems. SCL is a Commercial-off-the-Shelf
(COTS) software package which contains an expert system
and a command scripting language. It was designed to
operate both on-board a satellite and on the ground. This
makes it an ideal environment for developing a prototype
which contains the cluster commanding and monitoring
capability described earlier. Expert system rules can be
developed and migrated from ground to space as
appropriate. Using the rule-based expert system a fault tree
for known anomalous conditions can be developed. An

initial ground prototype developed is shown in figure 2.
Although this is for a simplified example it provides cluster
level state-of-health monitoring and control. A prototype
being developed is adding the hierarchical monitoring
capability.

mwincj;; Sss^Mjfi

^■4 fa<::" W^E^E:

|t.' hi.: '..>-.. [i< ■• i

• ■Hi- l.t,.

J. it I

■ •■'v.- »i e>".

^•Z, X5J-SC , / ■• • i, 'IM« __ „
. ■ IZj a«.- '

■_..^>l""...

(«w ^Mffir^.lCu »**«t w WAI ymt,

Figure 2: Ground station display

SCL is also being used to handle all commanding and
telemetry between the ground and the cluster and to simulate
the on-board Command and Data Handling (C&DH) system.
This will be described in section 4.

2.2 FLIGHT SYSTEM

This section discusses the flight system portion of the
testbed. First an overview of the ObjectAgent and
TeamAgent systems is given. ObjectAgent and TeamAgent
are two of the key components of the flight system as it
pertains to distributed satellite command and control. This
is followed by descriptions of the flight system architecture
and the cluster manager.

OBJECTAGENT AND TEAMAGENT

ObjectAgent and TeamAgent are being developed by
Princeton Satellite Systems with phase II funding from the
Air Force Research Laboratory (AFRL) under the Small
Business Innovative Research (SBIR) Program.
ObjectAgent is an agent based, message passing architecture
for use with distributed systems. TeamAgent applies the
ObjectAgent architecture to constellations of multiple
cooperating satellites. Thus, both systems are well suited for
use in the command and control of satellite clusters.

Agents in ObjectAgent can be used at all levels of software
functionality because there is no set level of complexity for
an agent. For instance, a designer could choose to
implement the entire flight software as a single agent, he
could use one agent for the software related to each
subsystem, or he could use multiple agents for each
subsystem etc. ObjectAgent agents are composed of skills.
The skills that an agent possesses determine its complexity

and functionality. However, all agents have some basics
skills to ensure that they can communicate. In addition,
agents have self-knowledge and they can explain their
functioning and purpose to other agents and users. Agent
communication takes place solely through messages, there is
no shared memory between agents. This ensures that agents
can work together even when they are not located on the
same processor.

A TeamAgent demonstration using the ObjectAgent
architecture prototyped in Matlab was conducted in January
2000. The demonstration showed the ability to control a
cluster of satellites using agents. A cluster of four satellites
was simulated. The satellites were placed in an elliptical
trajectory relative to a reference orbit. The payload of one
of the satellites was then failed. The failed satellite was
removed from the cluster, and the remaining three satellites
were repositioned along the elliptical trajectory to
compensate for the removed satellite. The cluster was
controlled in a leader/follower fashion with one of the
satellites in charge of determining a need to reconfigure as
well as of calculating reconfiguration trajectories. The same
satellite then issued thrust commands to the remaining
satellites. A more detailed account of this demonstration
can be found in [6] [7] [8].

The initial work for ObjectAgent™ and TeamAgent™ was
done in Matlab. Full details of this work can be found in
[4][9]. At present, the ObjectAgent architecture is being
ported to C++ for implementation on the OSE™ real-time
operating system (RTOS). Future TeamAgent
demonstrations will use the C++/OSE version of
ObjectAgent. More details regarding the status of the C++
version of ObjectAgent are given in [9].

FLIGHT SYSTEM ARCHITECTURE

The flight system section of the testbed consists of eight
Force PowerCore 6750 boards. The boards have a single
PowerPC 750 processor and are housed in a VME chassis.
They are connected using 100 Mbps ethernet. In addition
each board has two RS-232 interfaces. Each board is
running Enea's OSE RTOS. OSE is a message passing
operating system well suited for distributed applications.

As can be seen in Figure 1, the flight system interfaces with
a simulation environment and with the ground segment of
the testbed. The simulation includes spacecraft dynamics,
environmental factors, and actuator and sensor models. It
provides inputs to the software on the flight boards and
receives software outputs to the spacecraft actuators. At
present, the simulation is connected to each board via one of
its serial interfaces. In the future, the boards will interface
with the simulation environment through ethernet.
Communication between the ground and flight systems is
accomplished through the ethernet and is handled by SCL,
which is present at both ends of the interface. This interface

will be discussed further in the section describing prototype
development.

The testbed can be used to simulate a cluster of up to eight
satellites with the flight software for a single satellite
running on each of the processing boards. The prototype
system being tested at the present time, however, consists of
a three satellite cluster organized in a leader/follower
fashion. The leader satellite is known as the cluster
manager, it carries software to allow it to make cluster level
decisions and to issue commands to the follower satellites.
Because the two follower satellites in this system are
designated as primary and secondary back-ups to the cluster
manager, they carry the same software on-board; however,
software pertaining to cluster manager functionality is turned
off until the satellite needs to assume the function of cluster
manager.

THE CLUSTER MANAGER

As mentioned above, the cluster manager is responsible for
making cluster level decisions. It is this piece of software
which allows the satellite cluster to function as a "virtual"
satellite. The cluster manager functionality is broken down
into the following four major areas:

Command and control

Cluster data management

Formation flying

Fault management
The command and control portion of the cluster manager is
implemented using a combination of SCL, Casper and
Object Agent. Intersatellite communication and
communication between the cluster manager and the ground
is implemented using SCL. Casper is used to help break
down high level commands into lower level commands and
to help plan implementation of complex tasks. Both SCL
and ObjectAgent are used to generate commands for other
spacecraft, depending on the type of algorithm generating
the command. The capabilities provided by the cluster
manager command and control allow the cluster to be
treated as a "virtual" satellite.

Cluster data management is needed because the cluster must
be able to provide state of health information for all the
satellites in the cluster. In addition, it must keep track of
data, such as relative position and velocity, needed to
control the cluster. Potentially, the cluster must be able to
provide any telemetry data requested by the ground for any
of the satellites in the cluster. The SCL database is used to
keep track of all necessary data. Some data is provided by
the satellites to the cluster manager on a periodic basis,
while other data is only provided upon request. The
information that the cluster manager keeps in its database is
still to be determined, but at a minimum it includes the
following (for each satellite in the cluster):

Relative position

Relative velocity

Absolute position

Absolute velocity

Attitude quaternion

System time

Spacecraft mode

Fuel level

Reference trajectory

Sensor states

The formation flying part of the cluster manager is
responsible for maintaining the cluster formation and for
reconfiguring the cluster whenever necessary. The
algorithms necessary for formation flying are implemented
as ObjectAgent agents. The inputs needed by the agents are
sometimes provided by other agents and sometimes obtained
from the SCL database. The outputs from the formation
flying segment of the cluster manager are commands for the
members of the cluster. Thus, the formation flying portion
of the cluster manager is implemented using ObjectAgent
but it has strong interfaces to both the cluster data
management and the command and control portions.

The cluster manager will be responsible for identifying and
handling cluster level faults. Cluster level faults are those
faults which require action from the cluster in order to be
managed. An example of a cluster level fault is a failure of
the intersatellite link in one of the satellites. In this case,
though the spacecraft in question may still be able to
function as an individual satellite, it is no longer able to
participate as a member of the cluster and the cluster
manager must compensate for this fact. Cluster level fault
management will be implemented using a combination of
ObjectAgent and SCL. At present more details cannot be
provided because the fault management portion of the
cluster manager has not been fully defined.

3. PROTOTYPE DEMONSTRATION

Several prototypes have been or are currently under
development which show initial operation of our cluster
management system.

The initial prototype, which was Matlab based, included
four satellites flying in formation which communicated to an
SCL based ground station via sockets. Within the prototype
the system had the ability to: command the cluster, receive
telemetry from the cluster, display cluster status, inject faults
such as a GPS failure, perform autonomous reconfiguration,
and fly in formation using Hill's equations. Upon GPS
failure the on-board cluster manager would autonomously
remove the failed satellite from the cluster. Orbital data was
sent down to the ground station and forwarded to a graphical

display system where operation could be visualized in real-
time.

A second series of prototypes being developed extends the
above system and implements the on-board cluster
management system on the PowerPC architecture described
earlier. As mentioned earlier, SCL is used as the on-board
Command and Data Handling (C&DH) system and will
handle all communication between the on-board cluster
manager and the ground system. The communication
protocol was CCSDS. The initial prototype contained
approximately 15-20 telemetry points and allowed for
ground commanding. The initial system showed a
prototypical on-board C&DH system but was not integrated
with TeamAgent. An environmental simulator, which
interfaced with the PowerPC's, was used to generate orbital
data. A second prototype under development will show
integration of the TeamAgent system with the C&DH
subsystem. The ground system developed in the initial
prototype contained several features which will be enhanced
in future prototypes. This included: telemetry
decommutation, a graphical fault tree, telemetry display,
commanding ability, web-based fault diagnosis. In addition
the ground system had an interface with Satellite Toolkit for
displaying satellite orbits.

[1] "TechSat 21: Advanced Research and Technology Enabling
Distributed Satellite Systems", Overview Briefing of TechSat 21,
http://www.vs.afrl.af.mil/vsd/techsat21.

[2] Wyatt J., Sherwood R, Sue M., Szijjarto J., "Flight
Validation of On-Demand Operations: The Deep Space One
Beacon Monitor Operations Experiment", Proceedings of the 5th

International Symposium on Artificial Intelligence, Robotics and
Automation in Space, ESTEC, The Netherlands, June 1999.

[3] Zetocha P., Self L., "An Overview of Agent Technology for
Satellite Autonomy", 1999 FLAIRS Conference Proceedings,
Orlando FL, May 1999.

[4] Paluszek M., Thomas S, Sullivan W., Surka D.,
"ObjectAgent System Architecture for Autonomous Spacecraft",
Phase ISBIR Final Report, May 1999.

[5] Zetocha, P., "Satellite Cluster Command and Control",
Proceedings of the IEEE Aerospace 2000 Conference, Big Sky
MT, Mar 2000.

[6] Schetter, T. P., M. E. Campbell, and D. M. Surka,
"Comparison of Multiple Agent-based Organizations for
Satellite Constellations," 2000 FLAIRS AI Conference,
Orlando, Florida, May 2000.

4. CONCLUSION / FUTURE RESEARCH

At the time of this writing a cluster management
demonstration is being developed which essentially migrates
the initial cluster manager described earlier and
implemented in Matlab to the PowerPC architecture. This
demonstration will show autonomous reconfiguration, a
limited ACS implementation, as well as collision avoidance.

Subsequent prototypes will be developed which will
enhance cluster management functionality and eventually
lead to implementation of an actual cluster management
system for TechSat-21 which will contain both flight and
ground components.

Flying a cluster of satellites in tight formation requires an
on-board cluster management system in order to reduce
response time, provide fault tolerance, and enhance mission
performance. In addition a ground system capable of
interacting with the flight system is also required in order to
offer failsafe operation and to reduce ground manpower
requirements and costs. The cluster management system
being development in the AFRL testbed is well on the way
towards achieving our objectives.

5. REFERENCES

[7] Schetter, T.P., M. E. Campbell, and D. M. Surka,
"Multiple Agent-Based Autonomy for Satellite
Constellations," Second International Symposium on Agent
Systems and Applications, Zurich, Switzerland, September
2000.

[8] Surka, D. M, M. C. Brito, and C. G. Harvey,
"Development of the Real-Time ObjectAgent Flight
Software Architecture for Distributed Satellite Systems," To
be Presented at IEEE Aerospace Conference, Big Sky,
Montana, March 20001.

[9] Surka D, Brito M, Paluszek M., Schetter Thomas, Campbell
M., "The TeamAgent System for Multiple Satellite
Constellations", Phase ISBIR Final Report, April 2000..

Paul Zetocha is a Computer
Engineer and is currently the lead
for the Intelligent Satellite Systems
Group of the Air Force Research
Laboratory's Space Vehicles
Directorate. For the past eight
years he has been involved, both
as Program Manager and through in-house development,
with over a dozen programs related to spacecraft autonomy.
He is also the Chairman of the AIAA Intelligent Systems
Technical Committee. Mr. Zetocha has received M.S.
degrees in both Electrical Engineering and Computer
Science from the University of New Mexico with an
emphasis in the areas of signal processing and artificial
intelligence respectively.

Margarita Brito is an Aerospace
Engineer with Princeton Satellite
Systems. Ms. Brito joined the
company in September 1999 and
has been in New Mexico since
April 2000. She is working with
others to develop Object Agent
software to run on the OSE Real Time Operating System
addition, she is responsible for the integration
ObjectAgent software into the AFRL TechSat 21 Testbed.
Ms. Brito is also responsible for the integration of an
attitude propagator with the AFRL Testbed.

In
of

